Сделать паяльник своими руками домашних, и не только домашних, мастеров побуждают прежде всего экономические соображения. Простой паяльник на 220 В для обычных мелких спаечных работ лучше, конечно, купить. Однако и его возможно доработать, не разбирая, чтобы продлить жизнь жала. Но вот «топор» на 150-200 Вт, которым можно паять металлические водопроводные трубы, стоит уже не 4,25, а вдесятеро больше. И не советских рублей, а вечнозеленых условных единиц. Та же проблема возникает, если паять нужно вне доступности электросети от автомобильных 12 В или карманного литий-ионного аккумулятора. Как самостоятельно сделать паяльник на такие случаи, и не только на такие, рассматривается в сегодняшней публикации.
Sub Micro Devises, сверхминиатюрные устройства. Наглядно можно увидеть smd, открыв мобильный телефон, смартфон, планшет или компьютер. По технологии smd малюсенькие (возможно, меньше среза спички) компоненты без проволочных выводов монтируются пайкой на контактные площадки, по терминологии smd называемые полигонами. Полигон может быть с тепловым барьером, предотвращающим растекание тепла по дорожкам печатной платы. Тут опасность не только и не столько в возможности отслоения дорожек – от нагрева может порваться пистон, соединяющий слои монтажа, что приведет устройство в полную негодность.
Паяльник для smd должен быть не только микромощным, до 10 Вт. Запас тепла в его жале не должен превышать того, который может выдержать паяемая деталь. Но долгая пайка слишком холодным паяльником еще более опасна: припой все не плавится, но деталюшка-то греется. А на режим пайки существенно влияет наружная температура, и тем больше, чем меньше мощность паяльника. Поэтому паяльники для smd выполняются либо с ограничением времени и/или величины теплоотдачи при пайке, либо в оперативной, на протяжении текущей технологической операции, регулировкой температуры жала. Причем держать ее нужно на 30-40 градусов выше температуры плавления припоя с точностью буквально до 5-10 градусов; это т. наз. допустимый температурный гистерезис жала. Этому очень мешает тепловая инерция самого паяльника, и основная задача при конструировании такового – добиться его возможно меньшей постоянной времени по теплу, см. далее.
Сделать паяльник в домашних условиях возможно для любой из указанных целей. В т.ч. и мощный для пайки стального либо медного водопровода, и достаточно точный мини для smd.
Примечание: вообще-то в паяльнике жало это рабочая (залуживаемая) часть его стержня. Но, поскольку стержни бывают и другие разные, будем для ясности считать весь стержень жалом. Если рабочая часть паяльника насаживается на стержень, она называется наконечником. Примем, что наконечник со стержнем это тоже жало.
Пока не будем вдаваться в сложности. Допустим, нам нужен обычный паяльник на 220В без затей. Идем выбирать и видим, разница в ценах достигает 10 и более раз. Разбираемся – почему. Первое: нагреватель, нихромовый или керамический. Последний (не «альтернативный»!) практически вечен, но, если паяльник уронить на твердый пол, может расколоться. Жало паяльников на керамике обязательно несменное – значит, надо покупать новый. А нихромовый нагреватель, если паяльник не забывать включенным на ночь, служит более 10 лет; при эпизодическом пользовании – свыше 20. И в крайнем случае его можно перемотать.
Разница в цене сократилась теперь до 3-4 раз, в чем еще дело? В жале. Никелированное из меди со специальными присадками мало растворяется припоем и очень медленно пригорает в обойме паяльника, но стоит дорого. Латунное или бронзовое хуже греется, и паять им smd нельзя – температурный гистерезис никак не удается вогнать в норму вследствие много худшей, чем у меди, теплопроводности материала. Красномедное жало и съедается припоем, и довольно быстро распухает от окиси меди, но зато дешевле.
Примечание: жало из электротехнической меди (отрезок обмоточного провода) для обычного паяльника непригодно – быстро растворяется и обгорает. Однако для smd такое жало самое то, его теплопроводность максимально возможная, а тепловая инерция и гистерезис минимальны. Правда, менять его придется часто, но жало-то со спичку или меньше.
С обгоранием и распуханием красномедного жала можно бороться просто аккуратностью: окончив работу и дав паяльнику остыть, жало вынимают, обколачивают от окисла, постукивая о край стола, а канал обоймы паяльника продувают. С растворением припоем хуже: часто подтачивать жало неудобно и оно быстро срабатывается.
Сделать жало для паяльника из обычной красной меди в разы более стойким к действию расплавленного припоя можно, не заточив его рабочий конец, а проковав до нужной формы. Холодная медь отлично куется обычным слесарным молотком на наковальне настольных тисков. У автора этой статьи в древнем советском ЭПЦН-25 кованое жало сидит уже более 20 лет, хотя в работе этот паяльник бывает если не каждый день, то уж точно каждую неделю.
Самый простой паяльник можно сделать из проволочного резистора, это готовый нихромовый нагреватель. Рассчитать его также несложно: при рассеивании номинальной мощности в свободном пространстве проволочные резисторы греются до 210-250 градусов. С теплоотводом в виде жала «проволочник» держит долговременную перегрузку по мощности в 1,5-2 раза; температура жала при этом будет не ниже 300 градусов. Ее можно повысить до 400, дав перегрузку по мощности в 2,5-3 раза, но тогда после 1-1,5 час работы паяльнику нужно будет давать остыть.
Рассчитывают необходимое сопротивление резистора по формуле: R = (U^2)/(kP), где:
R – искомое сопротивление;
U – рабочее напряжение;
P – требуемая мощность;
k – указанный выше коэффициент перегрузки по мощности.
Напр., нужен паяльник на 220 В 100 Вт для пайки медных труб. Теплоотдача большая, поэтому берем k = 3. 220^2 = 48400. kP = 3*100 = 300. R = 48400/300 = 161,3… Ом. Берем резистор на 100 Вт 150 или 180 Ом, т.к. «проволочников» на 160 Ом не бывает, этот номинал из ряда на 5% допуск, а «проволочники» не точнее 10%.
Обратный случай: есть резистор на мощность p, какой мощности из него можно сделать паяльник? От какого напряжения его запитывать? Вспоминаем: P = U^2/R. Берем P = 2 p. U^2 = PR. Берем из этой величины квадратный корень, получаем рабочее напряжение. Напр., есть резистор 15 Вт 10 Ом. Мощность паяльника выходит до 30 Вт. Берем квадратный корень из 300 (30 Вт*10 Ом), получаем 17 В. От 12 В такой паяльник разовьет 14,4 Вт, можно паять мелочь легкоплавким припоем. От 24 В. От 24 В – 57,6 Вт. Перегрузка по мощности почти в 6 раз, но изредка и недолго спаять этим паяльником что-то большое возможно.
Изготовление паяльника из резистора
Как сделать паяльник из резистора, показано на рис. выше:
Описанный выше паяльник из резисторов на 5-20 Вт делали многие (в т.ч. и автор во дни пионерской молодости) и, попробовав, убеждались – работать им всерьез нельзя. Греется невыносимо долго, и паяет только мелочь тычком – слой керамики мешает теплопередаче от нихромовой спирали в жало. Именно поэтому нагреватели фабричных паяльников мотаются на слюдяные оправки – теплопроводность слюды на порядки выше. К сожалению, свернуть слюду в трубочку дома невозможно, да и мотать нихром 0,02-0,2 мм дело тоже не для каждого.
Но вот с паяльниками от 100 Вт (резисторы от 35-50 Вт) дело другое. Тепловой барьер из керамики в них относительно тоньше, слева на рис., а запас тепла в массивном жале на порядок больше, т.к. его объем растет по кубу размеров. Качественно пропаять стык медных труб 1/2″ 200 Вт паяльником из резистора вполне возможно. Особенно, если жало не сборное, а цельное кованое.
Проволочные резисторы, пригодные и непригодные для изготовления паяльников
Примечание: проволочные резисторы выпускаются на мощность рассеяния до 160 Вт.
Только для паяльника надо искать резисторы старых типов ПЭ или ПЭВ (в центре на рис., в производстве до сих пор). Их изоляция остеклованная, выдерживает многократный нагрев до светло-красного без потери свойств, только темнеет, остывая. Керамика внутри чистая. А вот резисторы С5-35В (справа на рис.) крашеные, внутри тоже. Снять краску в канале полностью невозможно – керамика пористая. При нагреве краска обугливается и жало прикипает намертво.
Регулятор напряжения, тока и мощности паяльника на микросхеме TC43200
Пример с низковольтным паяльником из резистора приведен выше не зря. Резистор ПЭ (ПЭВ) из хлама или с железного базара чаще всего оказывается неподходящего номинала под наличное напряжение. В таком случае нужно делать регулятор мощности для паяльника. В наши дни это гораздо проще даже людям, имеющим об электронике самое смутное представление. Идеальный вариант – купить у китайцев (ну, Али Экспресс, а то как же) готовый универсальный регулятор напряжения и тока TC43200, см. рис. справа; стоит он недорого. Допустимое входное напряжение 5-36 В; выходное – 3-27 В при токе до 5 А. Напряжение и ток выставляются отдельно. Поэтому можно не только выставить нужное напряжение, но и регулировать мощность паяльника. Есть, напр., инструмент на 12 В 60 Вт, а сейчас нужно 25 Вт. Выставляем ток в 2,1 А, на паяльник пойдет 25,2 Вт и ни милливаттом больше.
Примечание: для использования с паяльником штатные многооборотные регуляторы TC43200 лучше заменить обычными потенциометрами с градуированными шкалами.
Многие предпочитают импульсные паяльники: они лучше подходят для микросхем и др. мелкой электроники (кроме smd, но см. и далее). В ждущем режиме жало импульсного паяльника или холодное, или немного подогревается. Паяют, нажав на кнопку пуска. Жало при этом быстро, за доли-единицы с, греется до рабочей температуры. Контролировать пайку очень удобно: растекся припой, выдавил из капли флюс – отпустил кнопку, жало так же быстро остыло. Нужно только успеть его убрать, чтобы не припаялось туда же. Опасность сжечь компонент, имея некоторый опыт, минимальна.
Импульсный разогрев жала паяльника возможен несколькими способами в зависимости от рода работы и требований к эргономике рабочего места. В любительских условиях, или мелкому ИП-одиночке импульсный паяльник удобнее и доступнее будет сделать по одной из след. схем:
Электрические принципиальные схемы импульсных паяльников указанных типов приведены на рис: поз. 1 – с токоведущим жалом промышленной частоты; поз. 2 – с форсированным подогревом изолированного жала; поз. 3 и 4 – с токоведущим жалом высокой частоты. Далее мы разберем их особенности, достоинства, недостатки и способы реализации в домашних условиях.
Электрические принципиальные схемы импульсных паяльников
Схема импульсного паяльника с жалом под током промышленной частоты наиболее проста, но это не единственное ее достоинство, и не главное. Потенциал на жале такого паяльника не превышает долей вольта, поэтому он безопасен для самых нежных микросхем. Пока не появились индукционные паяльники системы METCAL (см. далее), именно импульсниками промышленной частоты работала значительная часть монтажников на производстве электроники. Недостатки – громозкость, значительный вес и, как следствие, плохая эргономика: на смене длинее 4 час. работники уставали и начинали ошибаться. Но в любительском обиходе импульсных паяльников промышленной частоты до сих пор много: Зубр, Сигма (Sigma), Светозар и др.
Устройство импульсного паяльника на 50/60 Гц показано на поз. 1 и 2 рис. Видимо, ради экономии на издержках производства изготовители чаще всего применяют в них трансформаторы на сердечниках (магнитопроводах) типа П (поз 2), но это далеко не оптимальный вариант: чтобы паяльник паял как ЭПЦН-25, мощность трансформатора нужна 60-65 Вт. Вследствие большого поля рассеяния трансформатор на П-сердечнике в режиме КЗ сильно греется, а время разогрева жала доходит до 2-4 с.
Устройство импульсного паяльника промышленной частоты и его доработка под трансформатор на Ш-образном сердечнике
Если П-сердечник заменить на ШЛ от 40 Вт с вторичной обмоткой из медной шины (поз. 3 и 4), то паяльник выдерживает часовую работу с интенсивностью 7-8 паек в минуту без недопустимого перегрева. Для работы в режиме периодических кратковременных КЗ число витков первичной обмотки увеличивают на 10-15% против расчетного. Данное исполнение выгодно и тем, что жало (медная проволока диаметром 1,2-2 мм) можно крепить непосредственно к выводам вторичной обмотки (поз. 5). Поскольку ее напряжение доли вольта, это еще увеличивает экономичность паяльника и удлиняет время его работы до перегрева.
Схема паяльника с форсированным подогревом особых пояснений не требует. В дежурном режиме нагреватель работает на четверти номинальной мощности, а при нажатии на пуск в него выбрасывается накопленная в батарее конденсаторов энергия. Отключая/подключая к батарее емкости, можно довольно грубо, но в допустимых пределах дозировать количество выделяемого жалом тепла. Достоинство – полное отсутствие наведенного потенциала на жале, если оно заземлено. Недостаток – на имеющихся в широкой продаже конденсаторах схема реализуема лишь для резисторных мини-паяльников, см. далее. Применяется в основном для эпизодических работ на не насыщенных компонентами платах гибридной сборки, smd + обычный печатный монтаж в сквозные пистоны.
Импульсные паяльники на повышенной или высокой частоте (десятки или сотни кГц) весьма экономичны: тепловая мощность на жале почти равна паспортной электрической инвертора (см. ниже). Также они компактны и легки, а их инверторы пригодны для питания резисторных мини-паяльников постоянного нагрева с изолированным жалом, см. далее. Нагрев жала до рабочей температуры – за доли с. В качестве регулятора мощности без доработок применим любой тиристорный регулятор напряжения 220 В. Могут быть запитаны постоянным напряжением 220 В.
Примечание: на мощность свыше ок. 50 Вт ВЧ импульсный паяльник делать не стоит. Хотя, напр. компьютерные ИПБ бывают мощностью до 350 Вт и более, но жало на такую мощность сделать практически невозможно – или не прогреется до рабочей температуры, или само расплавится.
Серьезный недостаток – на рабочих частотах сказывается влияние собственной индуктивности жала и вторичной обмотки. Из-за этого на жале на время более 1 мс может возникать наведенный потенциал свыше 50 В, что опасно для компонент КМОП (КМДП, CMOS). Также существенный недостаток – оператор облучается потоком мощности электромагнитного поля (ЭМП). Работать импульсным ВЧ паяльником мощностью 25-50 Вт можно не более часа в день, а до 25 Вт – не более 4-х час, но не более 1,5 час кряду.
Самый простой способ схемной реализации инвертора импульсного ВЧ паяльника на 25-30 Вт для обычных спаечных работ – на основе сетевого адаптера галогеновой лампы на 12 вольт, см. поз. 3 рис. со схемами. Трансформатор можно намотать на сердечнике из 2-х сложенных вместе колец К24х12х6 из феррита с магнитной проницаемостью μ не ниже 2000, или на Ш-образном магнитопроводе из такого же феррита сечением не менее 0,7 кв. см. Обмотка 1 – 250-260 витков эмалированного провода диаметром 0,35-0,5 мм, обмотки 2 и 3 – по 5-6 витков такого же провода. Обмотка 4 – 2 витка в параллель провода диаметром от 2 мм (на кольце) или оплетки от телевизионного коаксиального кабеля (поз. 3а), также запараллеленных.
Примечание: если паяльник более чем на 15 Вт, то транзисторы MJE13003 лучше заменить на MJE130nn, где nn>03, и поставить из на радиаторы площадью от 20 кв. см.
Вариант инвертора для паяльника до 16 Вт может быть выполнен на базе импульсного пускового устройства (ИПУ) для ЛДС или начинки перегоревшей лампочки-экономки соотв. мощности (не бейте колбу, там пары ртути!) Доработку иллюстрирует поз. 4 на рис. со схемами. То, что выделено зеленым, может быть различно в ИПУ разных моделей, но нам оно все равно. Нам нужно удал
ть пусковые элементы лампы (выделено красным на поз. 4а) и замкнуть накоротко точки А-А. Получим схему поз. 4б. В ней параллельно фазосдвигающему дросселю L5 подключается трансформатор на одном таком же кольце, как в пред. случае или на Ш-образном феррите от 0,5 кв. см (поз. 4в). Первичная обмотка – 120 витков провода диаметром 0,4-0,7; вторичная – 2 витка провода D>2 мм. Жало (поз. 4г) из такого же провода. Готовое устройство компактно (поз. 4д) и может быть помещено в удобный корпус.
Паяльник с нагревательным элементом на основе металлопленочного резистора МЛТ конструктивно аналогичен паяльнику из проволочного резистора, но выполняется на мощность до 10-12 Вт. Резистор работает с перегрузкой по мощности в 6-12 раз, т.к., во-первых, теплоотвод через относительно толстое (но абсолютно более тонкое) жало больше. Во-вторых, резисторы МЛТ физически в разы меньше ПЭ и ПЭВ. Отношение их поверхности к объему соотв. увеличивается и теплоотдача в окружающую среду относительно растет. Поэтому паяльники на резисторах МЛТ делаются только в вариантах мини и микро: при попытке увеличить мощность маленький резистор сгорает. Хотя МЛТ для спецприменения выпускаются на мощность до 10 Вт, своими руками реально сделать только паяльник на МЛТ-2 для мелких дискретных компонент (россыпи) и небольших микросхем, см. напр. видео ниже:
Примечание: цепочка резисторов МЛТ может быть также использована в качестве нагревателя автономного аккумуляторного паяльника для обычных спаечных работ, см. след. ролик:
Гораздо интереснее сделать мини паяльник из резистора МЛТ-0,5 для smd. Керамическая трубочка – корпус МЛТ-0,5 – очень тонкая и почти не препятствует теплопередаче на жало, но не пропустит тепловой импульс в момент касания полигона, отчего частенько сгорают компоненты smd. Подобрав жало (что требует довольно значительного опыта), smd таким паяльником можно не спеша паять, непрерывно контролируя в микроскоп процесс.
Процесс изготовления такого паяльника показан на рис. Мощность – 6 Вт. Нагрев либо непрерывный от инвертора из описанных выше, либо (лучше) с форсироваанным подогревом постоянным током от ИП на 12 В.
Как сделать мини-паяльник для микросхем из резистора МЛТ-0,5
Примечание: как сделать усовершенствованный вариант такого паяльника с более широким диапазоном применения, подробно описано здесь — oldoctober.com/ru/soldering_iron/
Индукционный паяльник на сегодняшний день вершина технических достижений в области пайки металлов эвтектическими припоями. В сущности, паяльник с индукционным нагревом это миниатюрная индукционная печь: ВЧ ЭМП катушки-индуктора поглощается металлом жала, которое при этом греется вихревыми токами Фуко. Сделать своими руками индукционный паяльник не так уж сложно, если есть в распоряжении источник токов ВЧ, напр. компьютерный импульсный блок питания, см. напр. сюжет
Однако качественно-экономические показатели индукционных паяльников для обычных спаечных работ невысоки, чего не скажешь об их вредном влиянии на здоровье. Фактически единственное их преимущество – прикипевшее к обойме в корпусе жало можно выдирать, на опасаясь порвать нагреватель.
Гораздо больший интерес представляют индукционные мини-паяльники системы METCAL. Их внедрение на производстве электроники позволило уменьшить процент брака из-за ошибок монтажников в 10000 раз (!) и удлинить рабочую смену до нормальной, причем работники расходились после нее бодрыми и дееспособными во всех прочих отношениях.
Устройство паяльника типа METCAL показано слева вверху на рис. Изюминка – в ферроникелевом покрытии жала. Паяльник питается ВЧ точно выдержанной частоты 470 кГц. Толщина покрытия выбрана такой, что на данной частоте вследствие поверхностного эффекта (скин-эффекта) токи Фуко сосредотачивались только в покрытии, которое сильно греется и передает тепло в жало. Самое жало оказывается заэкранированным от ЭМП и наведенные потенциалы на нем не возникают.
Устройство индукционных паяльников для микросхем
Когда покрытие прогреется до точки Кюри, выше которой по температуре ферромагнитные свойства покрытия исчезают, оно поглощает энергию ЭМП гораздо слабее, но ВЧ в медь все равно не пускает, т.к. электрическую проводимость сохраняет. Остыв ниже точки Кюри само по себе или вследствие оттока тепла на пайку, покрытие вновь начинает интенсивно поглощать ЭМП и подогревает жало. Таким образом, жало держит температуру, равную точке Кюри покрытия с точностью буквально до градуса. Тепловой гистерезис жала при этом ничтожен, т.к. определяется тепловой инерцией тонкого покрытия.
Во избежание вредного влияния на людей паяльники выпускаются с несменными жалами, наглухо закрепленными в картридже коаксиальной конструкции, по которому и подводится к катушке ВЧ. Картридж вставляется в ручку паяльника – держатель с коаксиальным разъемом. Картриджи выпускаются типов 500, 600 и 700, что соответствует точке Кюри покрытия в градусах Фаренгейта (260, 315 и 370 градусов Цельсия). Основной рабочий картридж – 600; 500-м паяют особо мелкие smd, а 700-м крупные smd и россыпь.
Примечание: чтобы перевести градусы Фаренгейта в Цельсия, нужно от фаренгейтов отнять 32, умножить остаток на 5 и поделить на 9. Если надо наоборот, к цельсиям добавляем 32, результат множим на 9 и делим на 5.
Все замечательно в паяльниках METCAL, кроме цены картриджа: за «(название фирмы) новый, хороший» — от $40. «Альтернативные» в полтора раза дешевле, но вырабатываются вдвое быстрее. Сделать самому жало METCAL нереально: покрытие наносится напылением в вакууме; гальваническое при температуре Кюри мгновенно отслаивается. Посаженная на медь тонкостенная трубка не обеспечит абсолютного теплового контакта, без чего METCAL превращается просто в плохой паяльник. Тем не менее, сделать своими руками почти полный аналог паяльника METCAL, причем со сменным жалом, хоть и трудно, но возможно.
Устройство самодельного индукционного паяльника для микросхем и smd, по рабочим качествам аналогичного METCAL, показано справа на рис. Когда-то похожие паяльники применялись на спецпроизводстве, но METCAL их полностью вытеснили благодаря лучшей технологичности и большей рентабельности. Однако для себя такой паяльник сделать можно.
Его секрет – в соотношении плеч наружной части жала и выступающего из катушки внутрь хвостовика. Если оно такое, как показано на рис. (приблизительно), а хвостовик покрыт теплоизоляцией, то тепловой фокус жала не выйдет за пределы обмотки. Хвостовик будет, конечно, горячее кончика жала, но их температуры будут меняться синхронно (теоретически термогистерезис нулевой). Раз настроив автоматику с помощью дополнительной термопары, измеряющей температуру кончика жала, дальше можно паять спокойно.
Роль точки Кюри играет таймер. Сигналом от терморегулятора на подогрев он обнуляется, напр., открыванием ключа, шунтирующего накопительную емкость. Запускается таймер сигналом, свидетельствующим о фактическом начале работы инвертора: напряжение с дополнительной обмотки трансформатора из 1-2 витков выпрямляется и разблокирует таймер. Если паяльником долго не паяют, таймер спустя 7 с выключит инвертор, пока жало не остынет и терморегулятор не выдаст новый сигнал на подогрев. Суть здесь в том, что термогистерезис жала пропорционален отношению времен выключенного и включенного нагрева жала O/I, а средняя мощность на жале обратному I/O. До градуса такая система температуру жала не держит, но +/–25 Цельсия при рабочей жала 330 обеспечивает.
Так какой же паяльник делать? Мощный из проволочного резистора однозначно стоит: расходов на него всего ничего, есть не просит, а выручить может основательно.
Стоит также сделать, чтобы был на хозяйстве, простой паяльник для smd из резистора МЛТ. Кремниевая электроника выдохлась, она в тупике. Квантовая уже на подходе, и вдали явственно замаячила графеновая. Напрямую с нами та и другая не сопрягаются, как компьютер через экран, мышку и клавиатуру или смартик/планшетка через экран и сенсоры. Поэтому кремниевое обрамление в устройствах будущего останется, но исключительно smd, а теперешняя россыпь покажется чем-то вроде радиоламп. И не думайте, что это фантастика: всего 30-40 лет тому назад ни один фантаст до смартфона не додумался. Хотя первые образцы мобильников тогда уже были. А утюг или пылесос «с мозгами» тогдашним мечтателям и в дурном сне в голову не пришли бы.
Ну, а для мастера-умельца вывод из этого прост: нужно учиться паять и smd. А что касается импульсного паяльника, то это уж кому как понравится.
|
| ||||||||
|
| ||||||||
Добавить комментарий